Skip to main content

How To Combine Your Own Efforts

I came across the invite-only beta for Onaswarm.com and I've had some good conversations since having my invite request responded by one of the developers. The upcoming plans are looking really interesting, and I like being able to combine my feeds. I'm still wanting some aggregation for things like bookmark feeds, and it would be nice if trivials like Twitter or Jaiku didn't put full posts into my final feed, but annotated the existing posts with my status. There are a lot of ways this could all go and I'm really interested in this.

You can view my Onaswarm feed. I'm going to continue keeping an ear on things over there and try to get in on this band wagon. This is more my kind of social network, because it deals with the things I already care about. What am I talk about, where have I surfed, and what am I talking about? It lets me pull all this from what I am already doing. I think this can turn out very well.

I have a related surprise to announce here, probably after the holidays. This is a developing side project of mine, which goes in line with things like this and is also quite a different beast. I'm really excited.

Comments

Popular posts from this blog

Interrupting Coders Isn’t So Bad

Here’s a hot take: disrupting coders isn’t all that bad.

Some disruptions are certainly bad but they usually aren’t. The coder community has overblown the impact. A disruption can be a good thing. How harmful disruption might be a symptom of other problems.

There are different kinds of disruptions. They are caused by other coders on your team, managers and other non-coders, or meetings throughout the day.

The easiest example to debunk is a question from a fellow developer. Imagine someone walks over to your desk or they ping you on Slack, because they have “one quick question.” Do you get annoyed at the interruption when you were in the middle of something important? You help out your teammate quickly and get back to work, trying to pick up where you left off. That’s a kind of interruption we complain about frequently, but I’m not convinced this is all that bad.

You are being disrupted but your team, of which you are only one member of the whole unit, is working smoothly. You unstuck …

Announcing Feet, a Python Runner

I've been working on a problem that's bugged me for about as long as I've used Python and I want to announce my stab at a solution, finally!

I've been working on the problem of "How do i get this little thing I made to my friend so they can try it out?" Python is great. Python is especially a great language to get started in, when you
don't know a lot about software development, and probably don't even know a lot about computers in general.

Yes, Python has a lot of options for tackling some of these distribution problems for games and apps. Py2EXE was an early option, PyInstaller is very popular now, and PyOxide is an interesting recent entry. These can be great options, but they didn't fit the kind of use case and experience that made sense to me. I'd never really been about to put my finger on it, until earlier this year:

Python needs LÖVE.

LÖVE, also known as "Love 2D", is a game engine that makes it super easy to build small Lua…

CARDIAC: The Cardboard Computer

I am just so excited about this.


CARDIAC. The Cardboard Computer. How cool is that? This piece of history is amazing and better than that: it is extremely accessible. This fantastic design was built in 1969 by David Hagelbarger at Bell Labs to explain what computers were to those who would otherwise have no exposure to them. Miraculously, the CARDIAC (CARDboard Interactive Aid to Computation) was able to actually function as a slow and rudimentary computer. 
One of the most fascinating aspects of this gem is that at the time of its publication the scope it was able to demonstrate was actually useful in explaining what a computer was. Could you imagine trying to explain computers today with anything close to the CARDIAC?

It had 100 memory locations and only ten instructions. The memory held signed 3-digit numbers (-999 through 999) and instructions could be encoded such that the first digit was the instruction and the second two digits were the address of memory to operate on. The only re…